5w^2+25=115

Simple and best practice solution for 5w^2+25=115 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5w^2+25=115 equation:



5w^2+25=115
We move all terms to the left:
5w^2+25-(115)=0
We add all the numbers together, and all the variables
5w^2-90=0
a = 5; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·5·(-90)
Δ = 1800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1800}=\sqrt{900*2}=\sqrt{900}*\sqrt{2}=30\sqrt{2}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{2}}{2*5}=\frac{0-30\sqrt{2}}{10} =-\frac{30\sqrt{2}}{10} =-3\sqrt{2} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{2}}{2*5}=\frac{0+30\sqrt{2}}{10} =\frac{30\sqrt{2}}{10} =3\sqrt{2} $

See similar equations:

| 6p=7p-13 | | 7p-13=6 | | 4a+13=5a | | (2^x)^2=128 | | 3y2-75=0 | | 10u=11u-4 | | (y-4)+6=54 | | 4b=5b-15 | | 14b-12=48 | | 4x-356=97864 | | (1+u)(4u-7)=0 | | 54w+8=162 | | 4^x+5=4^10 | | x4/19=9756 | | 162=54*w+8 | | 3b=b-16 | | 8-(6-6x)+9x=-2+12(x+1) | | 18-7+5y=11 | | 40.8=3.44u | | -4x-16=-2 | | 5w-90=0 | | 8+3x=65 | | 38x=18-48 | | 3b^2-19b=35 | | 1-8x=1x+13 | | 15r-6r=38 | | 8n+18N=4 | | 11(5-4n)=7(5-6n) | | 8-3(j-7)=-3(2-j)-j | | 0.1—2x=0.0480 | | 2n+1/3n-12=n | | 4^x=2^5x+3 |

Equations solver categories